题目内容

【题目】问题引入:

(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=(用α表示);如图②,∠CBO= ∠ABC,∠BCO= ∠ACB,∠A=α,则∠BOC=(用α表示)拓展研究:
(2)如图③,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,请猜想∠BOC=(用α表示),并说明理由.
类比研究:
(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,请猜想∠BOC=

【答案】
(1)90°+ α;120°+ α
(2)120°﹣ α
(3)
【解析】解:(1)如图①,∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC= ∠ABC,∠OCB= ∠ACB,∴∠OBC+∠OCB= (∠ABC+∠ACB),
在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣ (∠ABC+∠ACB)=180°﹣ (180°﹣∠A)=90°+ ∠A=90°+ α;
如图②,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣ (∠ABC+∠ACB)=180°﹣ (180°﹣∠A)=120°+ ∠A=120°+ α;(2)如图③,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣ (∠DBC+∠ECB)=180°﹣ (∠A+∠ACB+∠A+ABC)=180°﹣ (∠A+180°)=120°﹣ α;(3)在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣ (∠DBC+∠ECB)=180°﹣ (∠A+∠ACB+∠A+ABC)=180°﹣ (∠A+180°)= α.
所以答案是90°+ α,120°+ α;120°﹣ α; α.

【考点精析】根据题目的已知条件,利用角的运算的相关知识可以得到问题的答案,需要掌握角之间可以进行加减运算;一个角可以用其他角的和或差来表示.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网