题目内容

如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图 ⑥).
(1)求图 ②中∠BCB′的大小;
(2)图⑥中的△GCC′是正三角形吗?请说明理由.精英家教网
分析:(1)由折叠的性质知:B′C=BC,然后在Rt△B′FC中,含30°角的直角三角形的性质,即可求得∠BCB′的度数;
(2)首先根据题意得:GC平分∠BCB′,即可求得∠GCC′的度数,然后由折叠的性质知:GH是线段CC′的对称轴,可得GC′=GC,即可得△GCC′是正三角形.
解答:解:(1)由折叠的性质知:B′C=BC,
在Rt△B′FC中,
∵FC是斜边B′C的一半,
∴∠FB′C=30°,
∴∠BCB′=60°
即∠BCB′=60°;

(2)图⑥中的△CGC'是正三角形
理由如下:
∵GC平分∠BCB′,
∴∠GCB=
1
2
∠GCC′=
1
2
∠BCB′=30°,
∴∠GCC′=∠BCD-∠BCG=60°,
由折叠的性质知:GH是线段CC′的对称轴,
∴GC′=GC,
∴△GCC′是正三角形.
点评:此题考查了折叠的性质与正三角形的判定,以及三角函数的性质.此题难度不大,解题的关键是数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网