题目内容
【题目】(问题背景)
(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D
(简单应用)
(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论)
(问题探究)
(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,则∠P的度数为
(拓展延伸)
(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P)
(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论 .
【答案】(1)证明见解析;(2)24°;(3)24°;(4)∠P=x+y;(5)∠P=
【解析】
(1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D
(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证得∠P=(∠ABC+∠ADC),即可求出∠P度数.
(3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数.
(4)由(1)的结论得:∠CAB+∠C=∠P+∠CDB,∠CAB+∠P=∠B+∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P
(5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.
(1)如图1,
∠A+∠B+∠AOB=∠C+∠D+∠COD=180°
∵∠AOB=∠COD
∴∠A+∠B=∠C+∠D
(2)∵AP、CP分别平分∠BAD、∠BCD
∴∠BAP=∠PAD,∠BCP=∠PCD,
由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②
①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC
∴∠P=(∠ABC+∠ADC)
∴∠ABC=28°,∠ADC=20°
∴∠P=(28°+20°)
∴∠P=24°
故答案为:24°
(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,
∴∠1=∠2,∠3=∠4
由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②
①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2
∴30°+18°=2∠P
∴∠P=24°
故答案为:24°
(4)由(1)的结论得:∠CAB+∠C=∠P+∠CDB①,∠CAB+∠P=∠B+∠CDB②
①×3,得∠CAB+3∠C=3∠P+∠CDB③
②-③,得∠P-3x=y-3∠P
∴∠P=x+y
故答案为:∠P=x+y
(5)如图5所示,延长AB交DP于点F
由(1)的结论得:∠A+2∠1=∠C+180°-2∠3
∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P
∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3
解得:∠P=
故答案为:∠P=