题目内容
【题目】如图、,在平行四边形中,、的角平分线、分别与线段两侧的延长线(或线段)相交与、,与相交于点.
(1)在图中,求证:,.
(2)在图中,仍有(1)中的,成立,请解答下面问题:
①若,,,求和的长;
②是否能给平行四边形的边和角各添加一个条件,使得点恰好落在边上且为等腰三角形?若能,请写出所给条件;若不能,请说明理由.
【答案】(1)见解析;(2)①,,②,,见解析.
【解析】
(1)由平行线的性质和角平分线的性质即可证明结论;
(2)①由(1)题的思路可求得FG的长,再证明△BCG是等边三角形,从而得,过点作交延长线于点,在Rt△AFH中用勾股定理即可求出AF的长;
②若使点恰好落在边上且为等腰三角形,易得F、G两点重合于点E,再结合(1)(2)的结论进行分析即可得到结论.
解:(1)∵四边形是平行四边形,∴,.
∴,
又∵、是与的角平分线,
∴,即∠AEB=90°,
∴,
∵,∴,
又∵是的角平分线、
∴,
∴.
同理可得.
∴;
(2)解:①由已知可得,、仍是与的角平分线且,
,,,
.
如图,过点作交延长线于点.
∵,,.
.
∵,,,
,,,
.
②,(类似答案均可).
若使点恰好落在边上,则易得F、G两点重合于点E,又由(1)(2)的结论知,,所以平行四边形的边应满足;
若使点恰好落在边上且为等腰三角形,则EA=EB,所以∠EAB=∠EBA,
又因为、仍是与的角平分线,所以∠CBA=∠BAD=90°,所以∠C=90°.
练习册系列答案
相关题目