题目内容

【题目】已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根:
(2)若x1 , x2是原方程的两根,且|x1﹣x2|=2 ,求m的值,并求出此时方程的两根.

【答案】
(1)证明:∵△=(m+3)2﹣4(m+1)

=(m+1)2+4,

∵无论m取何值,(m+1)2+4恒大于0,

∴原方程总有两个不相等的实数根


(2)∵x1,x2是原方程的两根,

∴x1+x2=﹣(m+3),x1x2=m+1,

∵|x1﹣x2|=2 ∴(x1﹣x22=(2 2

∴(x1+x22﹣4x1x2=8,

∴[﹣(m+3)]2﹣4(m+1)=8∴m2+2m﹣3=0,

解得:m1=﹣3,m2=1.

当m=﹣3时,原方程化为:x2﹣2=0,

解得:x1= ,x2=﹣

当m=1时,原方程化为:x2+4x+2=0,

解得:x1=﹣2+ ,x2=﹣2﹣


【解析】(1)根据关于x的一元二次方程x2+(m+3)x+m+1=0的根的判别式△=b2﹣4ac的符号来判定该方程的根的情况;(2)根据根与系数的关系求得x1+x2=﹣(m+3),x1x2=m+1;然后由已知条件“|x1﹣x2|=2 ”可以求得(x1﹣x22=(x1+x22﹣4x1x2=8,从而列出关于m的方程,通过解该方程即可求得m的值;最后将m值代入原方程并解方程.
【考点精析】解答此题的关键在于理解求根公式的相关知识,掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根,以及对根与系数的关系的理解,了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网