题目内容

【题目】如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A到EF的距离AH始终保持与AB长相等,问在E、F移动过程中:
(1)∠EAF的大小是否有变化?请说明理由.
(2)△ECF的周长是否有变化?请说明理由.

【答案】
(1)解:∠EAF的大小没有变化.理由如下:

根据题意,知

AB=AH,∠B=90°,

又∵AH⊥EF,

∴∠AHE=90°,

∵AE=AE,

∴Rt△BAE≌Rt△HAE(HL),

∴∠BAE=∠HAE,

同理,△HAF≌△DAF,

∴∠HAF=∠DAF,

∴∠EAF=∠EAH+∠FAH= ∠BAH+ ∠HAD= (∠BAH+∠HAD)= ∠BAD,

又∵∠BAD=90°,

∴∠EAF=45°,

∴∠EAF的大小没有变化.


(2)解:△ECF的周长没有变化.理由如下:

∵由(1)知,Rt△BAE≌Rt△HAE,△HAF≌△DAF,

∴BE=HE,HF=DF,

∴CEFC=EF+EC+FC=EB+DF+EC+FC=2BC,

∴△ECF的周长没有变化.


【解析】(1)根据题意,求证△BAE≌△HAE,△HAF≌△DAF,然后根据全等三角形的性质求∠EAF= ∠BAD.(2)根据(1)的求证结果,用等量代换来计算△ECF的周长,如果结果是定量,就说明△ECF的周长没有变化,反之,△ECF的周长有变化.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网