题目内容
【题目】已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是( )
①m是无理数;②m是方程m2 -12=0的解;③m满足不等式组,④m是12的算术平方根.
A. ①② B. ①③ C. ③ D. ①②④
【答案】C
【解析】①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.
②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.
③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.
④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.
解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;
∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;
∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,
∴结论③不正确;
∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.
综上,可得
关于m的说法中,错误的是③.
故选C.
“点睛”(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.
(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.
练习册系列答案
相关题目