题目内容
已知y与x成正比例,且x=3时,y=2,则y=3时,x的值为( )
A. B. C. 2 D. 12
如图,抛物线与轴交于,两点.
(1)求该抛物线的解析式;
(2)抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标,若不存在,请说明理由.
(3)设抛物线上有一个动点,当点在该抛物线上滑动到什么位置时,满足,并求出此时点的坐标.
4的立方根是_____.
如图,正方体的底面边长分别为2cm和3cm,高为5cm.若一只蚂蚁从P点开始经过四个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为_____cm.
如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.
(1)求证:△PMN是等腰三角形;
(2)将△ADE绕点A逆时针旋转,
①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;
②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.
计算:.
(问题提出)
求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形每组对边的平方和是一个定值.
(从特殊入手)
我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊位置时的图形,并借助于所画图形探究问题的结论.
(问题解决)
已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形, AC⊥BD.
求证: .
证明:
甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了32分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个