题目内容
【题目】如图,在 中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是( )
A.AE=BE
B.AC=BE
C.CE=DE
D.∠CAE=∠B
【答案】B
【解析】根据线段垂直平分线的性质,得AE=BE,故A选项正确;因为AE>AC,AE=BE,所以AC<BE,故B选项错误;根据等角对等边,得∠BAE=∠B=30°;根据直角三角形的两个锐角互余,得∠BAC=60°,则∠CAE=∠BAE=30°,根据角平分线的性质,得CE=DE,故C选项正确;根据C的证明过程,故D选项正确.
【考点精析】解答此题的关键在于理解角平分线的性质定理的相关知识,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上,以及对线段垂直平分线的性质的理解,了解垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.
练习册系列答案
相关题目