题目内容
【题目】下列命题是真命题的是( )
A.在同圆或等圆中,等弧所对的圆周角相等
B.平分弦的直径垂直于弦
C.在同圆或等圆中,等弦所对的圆周角相等
D.三角形外心是三条角平分线的交点
【答案】A
【解析】
根据圆的性质,垂径定理,圆周角定理,三角形外心的定义,对照选项逐一分析即可.
解:A.在同圆或等圆中,等弧所对的圆周角相等,是真命题;
B.平分弦(弦不是直径)的直径垂直于弦,故原命题是假命题;
C.在同圆或等圆中,等弦所对的圆周角相等,弦对着两个圆周角,故是假命题;
D.三角形外心是三条边垂直平分线的交点,故是假命题;
故选:A.
【题目】(本题8分) 求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如,但可以通过计算器求. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:
n | 16 | 0.16 | 0.0016 | 1600 | 160000 | … |
4 | 0.4 | 0.04 | 40 | 400 | … |
(1)表中所给的信息中,你能发现什么规律?(请将规律用文字表达出来)
(2)运用你发现的规律,探究下列问题:已知1.435,求下列各数的算术平方根:
①0.0206 ; ②20600 ;
(3)根据上述探究过程类比研究一个数的立方根已知1.260,则
【题目】某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:
月产销量y(个) | … | 160 | 200 | 240 | 300 | … |
每个玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;
(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?