题目内容

【题目】如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据: ≈1.41, ≈1.73).

【答案】解:过点A作AH⊥CD,垂足为H,

由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6,
在Rt△ACH中,tan∠CAH=
∴CH=AHtan∠CAH,
∴CH=AHtan∠CAH=6tan30°=6× (米),
∵DH=1.5,
∴CD=2 +1.5,
在Rt△CDE中,
∵∠CED=60°,sin∠CED=
∴CE= =4+ ≈5.7(米),
答:拉线CE的长约为5.7米.
【解析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网