题目内容
【题目】已知:△ABC中∠ACB=90°,E在AB上,以AE为直径的⊙O与BC相切于D,与AC相交于F,连接AD.
(1)求证:AD平分∠BAC;
(2)若DF∥AB,则BD与CD有怎样的数量关系?并证明你的结论.
【答案】(1)见解析;(2) BD=2CD证明见解析
【解析】
(1)连接OD.根据圆的半径都相等的性质及等边对等角的性质知:∠OAD=∠ODA;再由切线的性质及平行线的判定与性质证明∠OAD=∠CAD;
(2)连接OF,根据等腰三角形的性质以及圆周角定理证得∠BAC=60°,根据平行线的性质得出BD:CD=AF:CF,∠DFC=∠BAC=60°,根据解直角三角形即可求得结论.
(1)证明:连接OD,
∴OD=OA,
∴∠OAD=∠ODA,
∵BC为⊙O的切线,
∴∠ODB=90°,
∵∠C=90°,
∴∠ODB=∠C,
∴OD∥AC,
∴∠CAD=∠ODA,
∴∠OAD=∠CAD,
∴AD平分∠BAC;
(2)连接OF,
∵DF∥AB,
∴∠OAD=∠ADF,
∵AD平分∠BAC,
∴∠ADF=∠OAF,
∵∠ADF=∠AOF,
∴∠AOF=∠OAF,
∵OA=OF,
∴∠OAF=∠OFA,
∴△AOF是等边三角形,
∴∠BAC=60°,
∵∠ADF=∠DAF,
∴DF=AF,
∵DF∥AB,
∴BD:CD=AF:CF,∠DFC=∠BAC=60°,
∴=2,
∴BD=2CD.
练习册系列答案
相关题目