题目内容
【题目】如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点,,.
(1)求抛物线的解析式和对称轴;
(2)是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);
(3)在第四象限的抛物线上是否存在点,使四边形是以为对角线且面积为的平行四边形?若存在,请求出点坐标,若不存在请说明理由.(请在图2中探索)
【答案】(1),函数的对称轴为:;(2)点;(3)存在,点的坐标为或.
【解析】
根据点的坐标可设二次函数表达式为:,由C点坐标即可求解;
连接交对称轴于点,此时的值为最小,即可求解;
,则,将该坐标代入二次函数表达式即可求解.
解:根据点,的坐标设二次函数表达式为:,
∵抛物线经过点,
则,解得:,
抛物线的表达式为: ,
函数的对称轴为:;
连接交对称轴于点,此时的值为最小,
设BC的解析式为:,
将点的坐标代入一次函数表达式:得:
解得:
直线的表达式为:,
当时,,
故点;
存在,理由:
四边形是以为对角线且面积为的平行四边形,
则 ,
点在第四象限,故:则,
将该坐标代入二次函数表达式得:
,
解得:或,
故点的坐标为或.
【题目】阅读下列材料:有这样一个问题:关于的一元二次方程有两个不相等的且非零的实数根探究,,满足的条件.
小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程对应的二次函数为;
②借助二次函数图象,可以得到相应的一元二次中,,满足的条件,列表如下:
方程根的几何意义:
方程两根的情况 | 对应的二次函数的大致图象 | ,,满足的条件 |
方程有两个不相等的负实根 | ||
____________ | ||
方程有两个不相等的正实根 | ____________ | ____________ |
1)参考小明的做法,把上述表格补充完整;
(2)若一元二次方程有一个负实根,一个正实根,且负实根大于-1,求实数的取值范围.