题目内容
【题目】某商场销售A、B两种品牌的洗衣机,进价及售价如下表:
(1)该商场9月份用45000元购进A、B两种品牌的洗衣机,全部售完后获利9600元,求商场9月份购进A、B两种洗衣机的数量;
(2)该商场10月份又购进A、B两种品牌的洗衣机共用去36000元,
①问该商场共有几种进货方案?请你把所有方案列出来.
②通过计算说明洗衣机全部销售完后哪种进货方案所获得的利润最大.
【答案】(1)A品牌购进12台,B品牌购进15台;(2)①有三种,方案一:A品牌6台,B品牌15台;方案二:A品牌12台,B品牌10台;方案三:A品牌18台,B品牌5台;②方案一:A品牌6台,B品牌15台的利润最大,理由见解析
【解析】
(1)设A品牌购进台,B品牌购进y台,根据总进价45000元和利润9600元列方程组求出x、y的值即可得答案;
(2)①根据总进价36000元得出关于a、b的二元一次方程,根据a、b为正整数求出方程的解即可;
②分别求出三种方案的利润,即可得答案.
(1)设A品牌购进台,B品牌购进y台,
∵商场9月份用45000元购进A、B两种品牌的洗衣机,全部售完后获利9600元,
∴,
解得:.
答:A品牌购进12台,B品牌购进15台.
(2)①设A品牌购进台,B品牌购进台,
∵购进A、B两种品牌的洗衣机共用去36000元,
∴
∴
∵a、b为正整数,
∴方程的解为,,,
∴购买方案有三种,
方案一:品牌6台,品牌15台;
方案二:品牌12台,品牌10台;
方案三:品牌18台,品牌5台.
②方案一利润:,
方案二利润:,
方案三利润:,
∵
∴方案一利润最大.
练习册系列答案
相关题目