题目内容
【题目】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O上一动点且在第一象限内,过点P作⊙O的切线,与x、y轴分别交于点A、B.
(1)求证:△OBP与△OPA相似;
(2)当点P为AB中点时,求出P点坐标;
(3)在⊙O上是否存在一点Q,使得以Q,O,A、P为顶点的四边形是平行四边形.若存在,试求出Q点坐标;若不存在,请说明理由.
【答案】(1)见解析;(2)P点坐标是(, );(3)存在;Q点坐标是(,﹣).
【解析】试题分析:(1)在Rt△OAB中,由切线的性质知:OP⊥AB,易证得△OAP∽△BPO.
(2)当P为AB中点时,由于OP⊥AB,那么OP平分∠AOB,即P点的横、纵坐标相等,已知OP的长,易求得点P的坐标.
(3)此题应分两种情况:
①OP为对角线,此时OQ∥AP,由于∠OPA=90°,那么∠POQ=90°,即△POQ是等腰直角三角形,已知OA⊥OB,那么OB⊥PQ,此时OB为∠POQ的对角线,即P、Q关于y轴对称由此得解;
②OP为边,此时OP∥AQ,由于∠OPA=90°,那么平行四边形OPAQ为矩形,即∠POQ是等腰直角三角形,解法同①.
解:(1)证明:
∵AB是过点P的切线,
∴AB⊥OP,∴∠OPB=∠OPA=90°;
∴在Rt△OPB中,∠1+∠3=90°,
又∵∠BOA=90°∴∠1+∠2=90°,
∴∠2=∠3;
在△OPB中△APO中,
∴△OPB∽△APO.
(2)∵OP⊥AB,且PA=PB,
∴OA=OB,
∴△AOB是等腰三角形,
∴OP是∠AOB的平分线,
∴点P到x、y轴的距离相等;
又∵点P在第一象限,
∴设点P(x,x)(x>0),
∵圆的半径为2,
∴OP=,解得x=或x=﹣(舍去),
∴P点坐标是(,).
(3)存在;
①如图设OAPQ为平行四边形,∴PQ∥OA,OQ∥PA;
∵AB⊥OP,∴OQ⊥OP,PQ⊥OB,
∴∠POQ=90°,
∵OP=OQ,
∴△POQ是等腰直角三角形,
∴OB是∠POQ的平分线且是边PQ上的中垂线,
∴∠BOQ=∠BOP=45°,
∴∠AOP=45°,
设P(x,x)、Q(﹣x,x)(x>0),
∵OP=2代入得,解得x=,
∴Q点坐标是(﹣,);(1分)
②如图示OPAQ为平行四边形,
同理可得Q点坐标是(,﹣).