题目内容
【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连结BD.求证:
(1)△BAD≌△CAE;
(2)BD⊥CE
【答案】(1)见解析,(2)见解析.
【解析】
(1)要证△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由
∠BAC=∠DAE=90°很易证得;(2)要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.
证明:(1)∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS).
(2)BD⊥CE,理由如下:
由(1)知,△BAD≌△CAE,
∴BD=CE,
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE.
练习册系列答案
相关题目
【题目】小明根据学习函数的经验,对函数的图像与性质进行了探究.请补充完整:
(1)先填表,再在如图所示的平面直角坐标系中,描全表中各对对应值为坐标的点,并画出该函数的图像:
x | … | -5 | -4 | -3 | -2 | 0 | 1 | 2 | 3 | … |
… | 2 | 3 | -3 | 0 | … |
(2)结合函数的图像,说出两条不同类型的性质;
①________________________________;____________________________________.
②的图像是由的图像如何平移得到?
___________________________________________.
(3)当函数值时,x的取值范围是____________span>.