题目内容
【题目】如图正比例函数y=2x的图像与一次函数 的图像交于点A(m,2),一次函数的图象经过点B(-2,-1)与y轴交点为C与x轴交点为D.
(1)求一次函数的解析式;
(2)求的面积。
【答案】(1)一次函数的解析式为;(2)1.
【解析】(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;
(2)根据(1)中的解析式,令y=0求得点C的坐标,从而求得三角形的面积.
解:(1)由题可得,把点A(m,2)代入正比例函数y=2x 得
2=2m
m=1
所以点A(1,2)
因为一次函数图象又经过点B(-2,-1),所以
解方程组得
这个一次函数的解析式为
(2)因为一次函数图象与x轴的交点为D,
所以点D的坐标为(-1,0)
因为的底为OD=1,高为A点的纵坐标2
所以
“点睛”此题综合考查了待定系数法求函数解析式、直线与坐标轴的交点的求法,关键是根据正比例函数解析式求得m的值.
【题目】为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:
购买服装的套数 | 1套至45套 | 46套至90套 | 91套以上 |
每套服装的价格 | 60元 | 50元 | 40元 |
如果两班单独给每位同学购买一套服装,那么一共应付5020元.
(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?
(2)甲、乙两班各有多少名同学?
【题目】重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积单位:百万平方米,与时间x的关系是单位:年, 且x为整数;后4年,每年竣工投入使用的公租房面积单位:百万平方米,与时间x的关系是单位:年, 且x为整数假设每年的公租房全部出租完另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金单位:元与时间单位:年, 且x为整数满足一次函数关系如下表:
元 | 50 | 52 | 54 | 56 | 58 | |
年 | 1 | 2 | 3 | 4 | 5 |
求出z与x的函数关系式;
求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高,这样可解决住房的人数将比第6年减少,求a的值.
参考数据: