题目内容
【题目】某公司为一种新型电子产品在该城市的特约经销商,已知每件产品的进价为40元,该公司每年销售这种产品的其他开支(不含进货价)总计100万元,在销售过程中得知,年销售量y(万件)与销售单价x(元)之间存在如表所示的函数关系,并且发现y是x的一次函数.
销售单价x(元) | 50 | 60 | 70 | 80 |
销售数量y(万件) | 5.5 | 5 | 4.5 | 4 |
(1)求y与x的函数关系式;
(2)问:当销售单价x为何值时,该公司年利润最大?并求出这个最大值;
【备注:年利润=年销售额﹣总进货价﹣其他开支】
(3)若公司希望年利润不低于60万元,请你帮助该公司确定销售单价的范围.
【答案】
(1)解:设y=kx+b,把(60,5),(80,4)代入得: ,
解得: ,
故答案为:y=﹣ x+8;
(2)解:该公司年利润w=(﹣ x+8)(x﹣40)﹣100=﹣ (x﹣100)2+80,
当x=100时,该公司年利润最大值为80万元;
(3)解:由题意得:﹣ (x﹣100)2+80=60,
解得:x1=80,x2=120,
故该公司确定销售单价x的范围是:80≤x≤120.
【解析】(1)利用表格,用待定系数法就可以求出y与x的函数关系式;
(2)该公司的年利润=年销售数量单件利润-公司每年销售这种产品的其他开支(不含进货价)总计100万元,列出函数关系式,并配成顶点式就可以得出结论;
(3)根据公司希望年利润不低于60万元得出方程求解即可得出该公司确定销售单价的范围.
【考点精析】本题主要考查了二次函数的最值的相关知识点,需要掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a才能正确解答此题.
【题目】为了了解某种车的耗油量,我们对这种车在高速公路以100km/h的速度做了耗油试验,并把试验的数据记录下来,制成下表:
汽车行驶时间t(h) | 0 | 1 | 2 | 3 | … | |
油箱剩余油量Q(L) | 100 | 94 | 88 | 82 | … |
(1)根据上表的数据,你能用t表示Q吗?试一试;
(2)汽车行驶6h后,油箱中的剩余油量是多少?
(3)若汽车油箱中剩余油量为52L,则汽车行驶了多少小时?
(4)若该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶,请问它在中途不加油的情况下能从高速公路起点开到高速公路终点吗,为什么?