题目内容
如图,△ABC是圆O的内接三角形,且AB≠AC,∠ABC和∠ACB的平分线,分别交圆O于点D,E,且BD=CE,则∠A等于( )
A.90° | B.60° | C.45° | D.30° |
连接AD、BE,
∵BD=CE
∴弧BD=弧CE,∴∠BAD=∠EBC,
∵∠BAD=∠CAD+∠CAB,∠EBC=∠ABE+∠ABD+∠CBD,
∴∠CAD+∠CAB=∠ABE+∠ABD+∠CBD,
∵∠CAD=∠CBD(同圆中,同弧所对的圆周角相等),
∴∠CAB=∠ABD+∠ABE,
∵∠ABE=∠ACE(同圆中,同弧所对的圆周角相等),
∴∠CAB=∠ABD+∠ACE(等量代换)
∵BD、CE分别平分∠ABC、∠ACB,
∴∠ABD=
∠ABC,∠ACE=
∠ACB
∴∠CAB=
(∠ABC+∠ACB)
∴∠ABC+∠ACB=2∠CAB
∵∠CAB+∠ABC+∠ACB=180°,
∴∠CAB+2∠CAB=180°,
3∠CAB=180°
∴∠CAB=60°.
故选C.
∵BD=CE
∴弧BD=弧CE,∴∠BAD=∠EBC,
∵∠BAD=∠CAD+∠CAB,∠EBC=∠ABE+∠ABD+∠CBD,
∴∠CAD+∠CAB=∠ABE+∠ABD+∠CBD,
∵∠CAD=∠CBD(同圆中,同弧所对的圆周角相等),
∴∠CAB=∠ABD+∠ABE,
∵∠ABE=∠ACE(同圆中,同弧所对的圆周角相等),
∴∠CAB=∠ABD+∠ACE(等量代换)
∵BD、CE分别平分∠ABC、∠ACB,
∴∠ABD=
1 |
2 |
1 |
2 |
∴∠CAB=
1 |
2 |
∴∠ABC+∠ACB=2∠CAB
∵∠CAB+∠ABC+∠ACB=180°,
∴∠CAB+2∠CAB=180°,
3∠CAB=180°
∴∠CAB=60°.
故选C.
练习册系列答案
相关题目