题目内容
【题目】如图,PA、PB是⊙O的切线,A、B分别为切点,PO交圆于点C,若∠APB=60°,PC=6,则AC的长为 .
【答案】2.
【解析】
试题分析:如图,设CP交⊙O于点D,连接AD.由切线的性质易证△AOP是含30度角的直角三角形,所以该三角形的性质求得半径=2;然后在等边△AOD中得到AD=OA=2;最后通过解直角△ACD来求AC的长度.
解:如图,设CP交⊙O于点D,连接AD.设⊙O的半径为r.
∵PA、PB是⊙O的切线,∠APB=60°,
∴OA⊥AP,∠APO=∠APB=30°.
∴OP=2OA,∠AOP=60°,
∴PC=2OA+OC=3r=6,则r=2,
∵∠AOD=60°,AO=DO,
∴△AOD是等边三角形,则AD=OA=2,
又∵CD是直径,
∴∠CAD=90°,
∴∠ACD=30°,
∴AC=ADcot30°=2,
故答案为2.
练习册系列答案
相关题目