题目内容
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
【答案】(1)画图见解析;(2)旋转中心的坐标为:(,﹣1);(3)点P的坐标为(﹣2,0).
【解析】
试题分析:(1)延长AC到A1,使得AC=A1C,延长BC到B1,使得BC=B1C,利用点A的对应点A2的坐标为(0,﹣4),得出图象平移单位,即可得出△A2B2C2;
(2)根据△△A1B1C绕某一点旋转可以得到△A2B2C2进而得出,旋转中心即可;
(3)根据B点关于x轴对称点为A2,连接AA2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.
解:(1)如图所示:
(2)如图所示:旋转中心的坐标为:(,﹣1);
(3)∵PO∥AC,
∴=,
∴=,
∴OP=2,
∴点P的坐标为(﹣2,0).
练习册系列答案
相关题目