题目内容

【题目】如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的个数是(  )

A. 5个 B. 4个 C. 3个 D. 2个

【答案】B

【解析】试题分析:根据正方形的性质可得AB=BC=AD∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用边角边证明△ABF△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出错误;根据直角三角形的性质判断出△AED△MAD△MEA三个三角形相似,利用相似三角形对应边成比例可得AM:EM=MD:AM=AD:AE=2,然后求出MD=2AM=4EM,判断出正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出正确;过点MMN⊥ABN,求出MNNB,然后利用勾股定理列式求出BM,过点MGH∥AB,过点OOK⊥GHK,然后求出OKMK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出正确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网