题目内容
如图,在△ABC中,∠B=40°,△ABC的两个外角的平分线交于E点,求∠AEC的度数.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140826/201408260012299874271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140826/201408260012299874271.png)
∵AE,CE是△ABC的两个外角的平分线,
∴∠ACE=
(∠B+∠BAC),∠CAE=
(∠B+∠BCA),
∵∠BCA+∠BAC=180°-∠B,
∴∠AEC=180°-∠ACE-∠CAE
=180°-
(∠B+∠BAC+∠B+∠BCA)
=180°-
(2∠B+180°-∠B)
=90°-
∠B.
=70°.
∴∠ACE=
1 |
2 |
1 |
2 |
∵∠BCA+∠BAC=180°-∠B,
∴∠AEC=180°-∠ACE-∠CAE
=180°-
1 |
2 |
=180°-
1 |
2 |
=90°-
1 |
2 |
=70°.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目