题目内容
【题目】(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,求△BCD的周长为;
(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF的周长等于AD的长.
①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);
②在图3中补全图形,求∠EOF的度数;
③若 , 求的值
【答案】解:(1)∵AB的垂直平分线交AC于点D,
∴BD=AD,
∴△BCD的周长=BC+CD+BD=BC+AC=1+2=3,
(2)①如图1所示:
△EDF即为所求;
②如图2所示:AH=DE,
连接OA、OD、OH,
∵点O为正方形ABCD的中心,
∴OA=OD,∠AOD=90°,∠1=∠2=45°,
在△ODE和△OAH中,
,
∴△ODE≌△OAH(SAS),
∴∠DOE=∠AOH,OE=OH,
∴∠EOH=90°,
∵△EDF的周长等于AD的长,
∴EF=HF,
在△EOF和△HOF中,
,
∴△EOF≌△HOF(SSS),
∴∠EOF=∠HOF=45°;
③作OG⊥CD于G,OK⊥AD于K,如图3所示:
设AF=8t,则CE=9t,设OG=m,
∵O为正方形ABCD的中心,
∴四边形OGDK为正方形,CG=DG=DK=KA=AB=OG,
∴GE=CE﹣CG=9t﹣m,DE=2CG﹣CE=2m﹣9t,FK=AF﹣KA=8t﹣m,DF=2DK﹣AF=2m﹣8t,
由(2)②知△EOF≌△HOF,
∴OE=OH,EF=FH,
在Rt△EOG和Rt△HOK中,
,
∴Rt△EOG≌Rt△HOK(HL),
∴GE=KH,
∴EF=GE+FK=9t﹣m+8t﹣m=17t﹣2m,
由勾股定理得:DE2+DF2=EF2 ,
∴(2m﹣9t)2+(2m﹣8t)2=(17t﹣2m)2 ,
整理得:(m+6t)(m﹣6t)=0,
∴m=6t,
∴OG=OK=6t,GE=9t﹣m=9t﹣6t=3t,FK=8t﹣m=2t,
∴====.
【解析】(1)由线段垂直平分线的性质得出BD=AD,得出△BCD的周长=BC+CD+BD=BC+AC,即可得出结果;
(2)①在AD上截取AH=DE,再作EG的垂直平分线,交AD于F,△EDF即为所求;
②连接OA、OD、OH,由正方形的性质得出∠1=∠2=45°,由SAS证明△ODE≌△OAH,得出∠DOE=∠AOH,OE=OH,得出∠EOH=90°,证出EF=HF,由SSS证明△EOF≌△HOF,得出∠EOF=∠HOF=45°即可;
③作OG⊥CD于G,OK⊥AD于K,设AF=8t,则CE=9t,设OG=m,由正方形的性质得出GE=CE﹣CG=9t﹣m,DE=2CG﹣CE=2m﹣9t,FK=AF﹣KA=8t﹣m,DF=2DK﹣AF=2m﹣8t,由HL证明Rt△EOG≌Rt△HOK,得出GE=KH,因此EF=GE+FK=17t﹣2m,由勾股定理得出方程,解方程求出m=6t,得出OG=OK=6t,GE=9t﹣m=9t﹣6t=3t,FK=8t﹣m=2t,由勾股定理即可得出结果.