题目内容
如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的度数是( )![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110405583478211/SYS201312111104055834782009_ST/images0.png)
A.10°
B.20°
C.30°
D.40°
【答案】分析:连接BC,OB,根据圆周角定理先求出∠C,再求∠BAC.
解答:
解:连接BC,OB,
AC是直径,则∠ABC=90°,
PA、PB是⊙O的切线,A、B为切点,则∠OAP=∠OBP=90°,
∴∠AOB=180°-∠P=140°,
由圆周角定理知,∠C=
∠AOB=70°,
∴∠BAC=90°-∠C=20°.
故选B.
点评:本题利用了直径对的圆周角是直角,切线的概念,圆周角定理,四边形内角和定理求解.
解答:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110405583478211/SYS201312111104055834782009_DA/images0.png)
AC是直径,则∠ABC=90°,
PA、PB是⊙O的切线,A、B为切点,则∠OAP=∠OBP=90°,
∴∠AOB=180°-∠P=140°,
由圆周角定理知,∠C=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110405583478211/SYS201312111104055834782009_DA/0.png)
∴∠BAC=90°-∠C=20°.
故选B.
点评:本题利用了直径对的圆周角是直角,切线的概念,圆周角定理,四边形内角和定理求解.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201106/28/fe49696e.png)
A、60° | B、120° | C、60°或120° | D、不能确定 |