题目内容
【题目】如图,在△ABC中,∠B=45°,∠ACB=60°,AB=16,AD⊥BC,垂足为D,∠ACB的平分线交AD于点E,则AE的长为( )
A.B.4C.D.6
【答案】C
【解析】
在Rt△ABD中,利用等腰直角三角形的性质列方程求解可求出AD和BD的长度,在Rt△ADC中;根据直角三角形中30度角所对的直角边是斜边的一半的性质可列方程解出CD,同理可得DE的长度,再利用AE=ADDE即可求出AE的长度.
解:∵AD⊥BC,
∴∠ADB=∠ADC=90°,即△ABD、△ADC和△CDE为直角三角形,
在Rt△ABD中,∵∠ADB=90°,AB=16,∠B=45°,
∴∠B=∠BAD =45°,则AD=BD,
设AD=BD=x,由勾股定理得:
,
解得:,即AD=BD=,
在Rt△ADC中,∵∠ADC=90°,∠ACD=60°,AD=,
∴∠CAD=30°,则,
设CD=x,则AC=2x,由勾股定理得:
,
解得:,即CD,
∵CE平分∠ACD,
∴∠ECD=30°,
在Rt△CDE中,同理得:DE,
∴AE=AD﹣DE=﹣=,
故选:C.
练习册系列答案
相关题目