题目内容
【题目】如图,在△ABC中,∠BAC=70°,将△ABC绕点A逆时针旋转,得到△AB'C',连接C'C.若C'C∥AB,则∠BAB'=______°.
【答案】40
【解析】
根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AC′C=∠ACC′,然后根据平行线的性质由CC′∥AB得∠ACC′=∠BAC =70°,则∠AC′C=∠ACC′=70°,再根据三角形内角和计算出∠CAC′=40°,所以∠B′AB=40°.
解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,
∴AC′=AC,∠B′AB=∠C′AC,
∴∠AC′C=∠ACC′,
∵CC′∥AB,
∴∠ACC′=∠BAC=70°,
∴∠AC′C=∠ACC′=70°,
∴∠CAC′=180°-2×70°=40°,
∴∠B′AB=40°,
故答案为40.
练习册系列答案
相关题目