题目内容

图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是(  )

A.当x=3时,EC<EMB.当y=9时,EC>EM
C.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变

D.

解析试题分析:由图象可知,反比例函数图象经过(3,3),应用待定系数法可得该反比例函数关系式为,因此,
当x=3时,y=3,点C与点M重合,即EC=EM,选项A错误;
根据等腰直角三角形的性质,当x=3时,y=3,点C与点M重合时,EM=, 当y=9时,,即EC=,所以,EC<EM,选项B错误;
根据等腰直角三角形的性质,EC=,CF=, 即EC·CF=,为定值,所以不论x如何变化,EC·CF的值不变,选项C错误;
根据等腰直角三角形的性质,BE=x,DF=y,所以BE·DF=,为定值,所以不论y如何变化,BE·DF的值不变,选项D正确.
故选D.
考点:1.反比例函数的图象和性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.等腰直角三角形的性质;5.勾股定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网