题目内容
【题目】如图,已知正方形ABCD的边长为3,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将DE绕点D按逆时针旋转90°,得到DF,连接AF,则AF的最小值是( )
A.
B.
C.
D.
【答案】A
【解析】
根据题意先证明△ADE≌△CDF,则CF=AE=1,根据三角形三边关系得:AF>AC-CF,即AF>AC-1,可知:当F在AC上时,AF最小,所以由勾股定理可得AC的长,可求得AF的最小值.
如图1,连接FC,AF,
∵ED⊥DF,
∴∠EDF=∠EDA+∠ADF=90°,
∵四边形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∴∠ADF+∠CDF=90°,
∴∠EDA=∠CDF,
在△ADE和△CDF中,
∵,
∴△ADE≌△CDF,
∴CF=AE=1,
∴AF>AC-CF,即AF>AC-1,
∴当F在AC上时,AF最小,如图2,
∵正方形ABCD的边长为3,
∴AC=3,
∴AF的最小值是3-1;
故选A.
练习册系列答案
相关题目
【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E |
出行方式 | 共享单车 | 步行 | 公交车 | 的士 | 私家车 |
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;
(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.