题目内容

【题目】如图,已知∠AOB=120°,射线OA绕点O以每秒钟6°的速度逆时针旋转到OP,设射线OA旋转OP所用时间为t秒(t<30).
(1)如图1,直接写出∠BOP=°(用含t的式子表示);
(2)若OM平分∠AOP,ON平分∠BOP. ①当OA旋转到如图1所示OP处,请完成作图并求∠MON的度数;
②当OA旋转到如图2所示OP处,若2∠BOM=3∠BON,求t的值.

【答案】
(1)(120﹣6t)
(2)解:∵OM平分∠AOP,ON平分∠BOP,

∴∠MOP= ∠AOP=3t,∠NOP= ∠BOP=60﹣3t,

∴∠MON=∠MOP+∠NOP=3t+60﹣3t=60°;

∵OM平分∠AOP,ON平分∠BOP,

∴∠MOA=∠MOP= ∠AOP=3t,

∠BON=∠NOP= ∠BOP=3t﹣60,

∵2∠BOM=3∠BON,

即2(120﹣3t)=3(3t﹣60),

解得t=28.


【解析】解:(1)∵∠AOB=120°,∠AOP=6t, ∴∠BOP=(120﹣6t)°.
故答案为:(120﹣6t);
(1)由于∠AOB=120°,∠AOP=6t,即可得到∠BOP=(120﹣6t)°;(2)根据角平分线的定义得到∠MOP= ∠AOP=3t,∠NOP= ∠BOP=60﹣3t,根据线段的和差即可得到结论;(3)根据角平分线的定义得到∠MOA=∠MOP= ∠AOP=3t,∠BON=∠NOP= ∠BOP=3t﹣60,根据已知条件列方程即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网