题目内容
【题目】如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须测量M、N两点之间的直线距离.选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米,AN=1.8千米,AB=54米,BC=45米,AC=30米,求M、N两点之间的直线距离.
【答案】M、N两点之间的直线距离为1500米.
【解析】试题分析:先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.
试题解析:在△ABC与△AMN中, , =,∴,又∵∠A=∠A,
∴△ABC∽△AMN,∴,即,
解得:MN=1500米,
答:M、N两点之间的直线距离是1500米;
考点:相似三角形的应用.
【题型】解答题
【结束】
23
【题目】如图,在△ADC中,点B是边DC上的一点,∠DAB=∠C, .若△ADC的面积为18cm,求△ABC的面积.
【答案】10
【解析】试题分析:根据相似三角形的判定定理得到△ADC∽△BAD,根据相似三角形的面积比等于相似比的平方即可得到结论.
试题解析:∵∠DAB=∠C,∠D=∠D, ∴△ADC∽△BAD,
∴,
∵△ADC的面积为18cm2 ,
∴△BDA的面积为8cm2 ,
∴△ABC的面积=△ADC的面积﹣△BDA的面积=10cm2
练习册系列答案
相关题目