题目内容
如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为
②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)
(3)若AC=4
2 |
分析:(1)可通过证明三角形ABC和三角形ACF全等来实现.因为AD=AF,AB=AC,只要证明∠BAD=∠CAF即可,∠BAD=90°-∠DAC=∠FAC,这样就构成了全等三角形判定中的SAS,△ABD≌△ACF,因此BC=CF,∠B=∠ACF,因为∠B+∠ACB=90°,那么∠ACF+ACD=90°,即FC⊥BC,也就是FC⊥BD.
(2)可通过构建三角形来求解.过点A作AG⊥AC交BC于点G,如果CF⊥BD,那么∠ACF=∠AGD=90°-∠ACD,又因为∠GAD=∠CAE=90°-∠CAD.AG=AC那么根据AAS可得出△AGD≌△ACF,AG=AC,又因为∠GAC=90°,可得出∠BCA=45°.
因此△BAC满足∠BCA=45°时,CF⊥BD.
(3)过点A作AQ⊥BC交BC的延长线于点Q,通过构建与线段相关的三角形相似来求解.
图中我们可以看出∠ADQ+∠PDC=90°,那么很容易就能得出,∠QAD=∠PDC,那么就能得出直角三角形ADQ∽直角三角形PDC,那么可得出关于CP、CD、AQ、QD的比例关系,因为∠BCA=45°,∠Q=90°,那么AQ=QC=2,如果设CD=x,那么可用x表示出CD、QD,又知道AQ的值和CP、CD、QD、AQ的比例关系,那么可得出关于CP和x的函数关系式,然后根据函数的性质和x的取值范围求出CP的最大值.
(2)可通过构建三角形来求解.过点A作AG⊥AC交BC于点G,如果CF⊥BD,那么∠ACF=∠AGD=90°-∠ACD,又因为∠GAD=∠CAE=90°-∠CAD.AG=AC那么根据AAS可得出△AGD≌△ACF,AG=AC,又因为∠GAC=90°,可得出∠BCA=45°.
因此△BAC满足∠BCA=45°时,CF⊥BD.
(3)过点A作AQ⊥BC交BC的延长线于点Q,通过构建与线段相关的三角形相似来求解.
图中我们可以看出∠ADQ+∠PDC=90°,那么很容易就能得出,∠QAD=∠PDC,那么就能得出直角三角形ADQ∽直角三角形PDC,那么可得出关于CP、CD、AQ、QD的比例关系,因为∠BCA=45°,∠Q=90°,那么AQ=QC=2,如果设CD=x,那么可用x表示出CD、QD,又知道AQ的值和CP、CD、QD、AQ的比例关系,那么可得出关于CP和x的函数关系式,然后根据函数的性质和x的取值范围求出CP的最大值.
解答:解:(1)①CF与BD位置关系是垂直,数量关系是相等
②当点D在BC的延长线上时①的结论仍成立
由正方形ADEF得AD=AF,∠DAF=90度
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD
∠ACF=∠ABD
∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°
∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)当∠BCA=45°时,CF⊥BD(如图)
理由是:过点A作AG⊥AC交BC于点G,∴AC=AG
可证:△GAD≌△CAF∴∠ACF=∠AGD=45°
∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
(3)当具备∠BCA=45°时,
过点A作AQ⊥BC交CB的延长线于点Q,(如图),
∵DE与CF交于点P时,此时点D位于线段CQ上,
∵∠BCA=45°,AC=4
,
∴由勾股定理可求得AQ=CQ=4.
设CD=x,∴DQ=4-x,
∵∠ADB+∠ADE+∠PDC=180°
且∠ADE=90°,
∴∠ADQ+∠PDC=90°,
又∵在直角△PCD中,∠PDC+∠DPC=90°
∴∠ADQ=∠DPC,
∵∠AQD=∠DCP=90°
∴△AQD∽△DCP,
∴
=
,∴
=
.
∴CP=-
x2+x=-
(x-2)2+1.
∴当x=2时,CP有最大值1.
②当点D在BC的延长线上时①的结论仍成立
由正方形ADEF得AD=AF,∠DAF=90度
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD
∠ACF=∠ABD
∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°
∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)当∠BCA=45°时,CF⊥BD(如图)
理由是:过点A作AG⊥AC交BC于点G,∴AC=AG
可证:△GAD≌△CAF∴∠ACF=∠AGD=45°
∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
(3)当具备∠BCA=45°时,
过点A作AQ⊥BC交CB的延长线于点Q,(如图),
∵DE与CF交于点P时,此时点D位于线段CQ上,
∵∠BCA=45°,AC=4
2 |
∴由勾股定理可求得AQ=CQ=4.
设CD=x,∴DQ=4-x,
∵∠ADB+∠ADE+∠PDC=180°
且∠ADE=90°,
∴∠ADQ+∠PDC=90°,
又∵在直角△PCD中,∠PDC+∠DPC=90°
∴∠ADQ=∠DPC,
∵∠AQD=∠DCP=90°
∴△AQD∽△DCP,
∴
CP |
DQ |
CD |
AQ |
CP |
4-x |
x |
4 |
∴CP=-
1 |
4 |
1 |
4 |
∴当x=2时,CP有最大值1.
点评:本题中综合考查了正方形的性质,全等三角形的判定以及函数关系式等综合知识.本题的关键是根据题意通过作辅助线来构建出和已知,所求等条件相关的三角形,然后通过相似,全等等知识来求解.
练习册系列答案
相关题目