题目内容

(11·贺州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交
于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD
面积的
C
分析:首先根据梯形的中位线定理,得到EF∥CD∥AB,再根据平行线等分线段定理,得到M,N分别是AC,BD的中点;然后根据三角形的中位线定理得到CD=2EM=2NF,最后根据梯形面积求法以及三角形面积公式求出,即可求得阴影部分的面积与梯形ABCD面积的面积比.
解答:解:过点D作DQ⊥AB,交EF于一点W,

∵EF是梯形的中位线,
∴EF∥CD∥AB,DW=WQ,
∴AM=CM,BN=DN.
∴EM=CD,NF=CD.
∴EM=NF,
∵AB=3CD,设CD=x,
∴AB=3x,EF=2x,
∴MN=EF-(EM+FN)=x,
∴SAME+SBFN=×EM×WQ+×FN×WQ=(EM+FN)QW=x?QW,
S梯形ABFE=(EF+AB)×WQ=x?QW,
SDOC+SOMN=CD×DW=x?QW,
S梯形FECD=(EF+CD)×DW=x?QW,
∴梯形ABCD面积=x?QW+x?QW=4x?QW,
图中阴影部分的面积=x?QW+x?QW=x?QW,
∴图中阴影部分的面积是梯形ABCD面积的:=
故选:C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网