题目内容
【题目】如图,直线y=x+3与两坐标轴交于A,B两点,抛物线y=﹣x2+bx+c过A、B两点,且交x轴的正半轴于点C.
(1)直接写出A、B两点的坐标;
(2)求抛物线的解析式和顶点D的坐标;
(3)在抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.
【答案】(1)B(0,3),A(﹣3,0);(2)抛物线解析式为:y=﹣x2﹣2x+3;顶点D坐标为(﹣1,4);(3)存在,符合条件的点P的坐标为(﹣1,4)或(2,﹣5).
【解析】试题分析:(1)分别令x=0和y=0代入y=x+3中可得结论;
(2)利用待定系数法求二次函数的解析式,根据配方法可得顶点D的坐标;
(3)分两种情况:设点P的坐标为(t,﹣t2﹣2t+3).根据两点距离公式可得:AB2=32+32=18,AP2=(t+3)2+(﹣t2﹣2t+3)2,BP2=t2+(﹣t2﹣2t)2.
①如图1,如果点B为直角顶点,那么AB2+BP2=AP2;
②如图2,如果点A为直角顶点,那么AP2+AB2=BP2,列方程可得结论.
试题解析:解:(1)当x=0时,y=3,∴B(0,3),当y=0时,x+3=0,x=﹣3,∴A(﹣3,0);
(2)把A(﹣3,0),B(0,3)分别代入y=﹣x2+bx+c得:
,解得: ,∴抛物线解析式为:y=﹣x2﹣2x+3;
顶点D坐标为(﹣1,4)
(3)存在.
设点P的坐标为(t,﹣t2﹣2t+3).
∵A(﹣3,0),B(0,3),∴AB2=32+32=18,AP2=(t+3)2+(﹣t2﹣2t+3)2,BP2=t2+(﹣t2﹣2t)2.
当△PAB是以AB为直角边的直角三角形时,可分两种情况:
①如图1,如果点B为直角顶点,那么AB2+BP2=AP2
(事实这里的点P与点D 重合)
即18+t2+(﹣t2﹣2t)2=(t+3)2+(﹣t2﹣2t+3)2,整理得t2+t=0,解得t1=﹣1,t2=0(不合题意舍去),则点P的坐标为(﹣1,4);
②如图2,如果点A为直角顶点,那么AP2+AB2=BP2,即18+(t+3)2+(﹣t2﹣2t+3)2=t2+(﹣t2﹣2t)2,整理得t2+t﹣6=0,解得t1=2,t2=﹣3(不合题意舍去),则点P的坐标为(2,﹣5);
综上所述:所有符合条件的点P的坐标为(﹣1,4)或(2,﹣5).
另解:如图3,作DE⊥y轴于点E,发现∠ABO=∠DBE=45°>
可知顶点D满足△DAB是直角三角形,这时点P的坐标为(﹣1,4);
作PA⊥AB交抛物线于点P,作PF⊥x轴于点F,发现∠PAF=∠APF=45°,由PF=AF求出另一点P为(2,﹣5).
【题目】为了迎接郑州市第二届“市长杯”青少年校园足球超级联赛,某学校组织了一次体育知识竞赛.每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级得分依次记为100分、90分、80分、70分.学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示.
(1)把一班竞赛成绩统计图补充完整;
(2)写出下表中a、b、c的值:
平均数(分) | 中位数(分) | 众数(分) | 方差 | |
一班 | a | b | 90 | 106.24 |
二班 | 87.6 | 80 | c | 138.24 |
(3)根据(2)的结果,请你对这次竞赛成绩的结果进行分析.