题目内容
【题目】如图,在平面直角坐标系中,点A坐标为(6,0),在B在y轴的正半轴上,且S△AOB=24.
(1)求点B坐标;
(2)若点P从B出发沿y轴负半轴运动,速度每秒2个单位,运动时间t秒,△AOP的面积为S,求S与t的关系式,并直接写出t的取值范围;
(3)在(2)的条件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB , 在线段AB的垂直平分线上是否存在点Q,使得△AOQ的面积与△BPQ的面积相等?若存在,求出Q点坐标;若不存在,请说明理由.
【答案】解:(1)∵点A坐标为(6,0),
∴OA=6,
∴S△AOB=×OA×OB=24,
则OB=8,
∴点B坐标为(0,8);
(2)当0≤t<4时,S=×(8﹣2t)×6=24﹣6t,
当t≥4时,S=×(2t﹣8)×6=6t﹣24;
(3)∵S△AOP+S△ABP=S△AOB ,
∴点P在线段OB上,
∵S△AOP:S△ABP=1:3,
∴OP:BP=1:3,
又∵OB=8,
∴OP=2,BP=6,
线段AB的垂直平分线上交OB于E,交AB于F,
∵OB=8,OA=6,
∴AB==10,
则点F的坐标为(3,4),
∵EF⊥AB,∠AOB=90°,
∴△BEF∽△BAO,
∴=,即=,
解得,BE=,
则OE=8﹣=,
∴点E的坐标为(0,),
设直线EF的解析式为y=kx+b,
则,
解得,k=,b=,
∴直线EF的解析式为y=x+,
∵△AOQ的面积与△BPQ的面积相等,又OA=BP,
∴x=y,或x=﹣y,
当x=y时,x=x+,解得,x=7,
则Q点坐标为(7,7);
当x=﹣y时,﹣x=x+,解得,x=﹣1,
则Q点坐标为(﹣1,1),
∴Q点坐标为(7,7)或(﹣1,1).
【解析】(1)根据三角形的面积公式求出OB的长即可;
(2)分0≤t<4和t≥4两种情况,根据三角形面积公式计算即可;
(3)根据题意和三角形的面积公式求出OP、BP的长,根据相似三角形的性质求出点E的坐标,根据中点的性质确定点F的坐标,运用待定系数法求出直线ef的解析式,根据等底的两个三角形面积相等,它们的高也相等分x=y和x=﹣y两种情况计算即可.