题目内容

【题目】【问题情境】:
如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE//AB,通过平行线性质来求∠APC.

(1)按小明的思路,求∠APC的度数;
(2)【问题迁移】:
如图2,AB//CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;

(3)【问题应用】:
在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.

【答案】
(1)

解:∵AB//CD,

∴PE//AB//CD,

∴∠A+∠APE=180°,∠C+∠CPE=180°,

∵∠PAB=130°,∠PCD=120°,

∴∠APE=50°,∠CPE=60°,

∴∠APC=∠APE+∠CPE=110°.


(2)

解:∠APC=∠α+∠β,

理由:如图2,过P作PE//AB交AC于E,

∵AB//CD,

∴AB//PE//CD,

∴∠α=∠APE,∠β=∠CPE,

∴∠APC=∠APE+∠CPE=∠α+∠β;


(3)

解:如图所示,当P在BD延长线上时,

∠CPA=∠α﹣∠β;

如图所示,当P在DB延长线上时,

∠CPA=∠β﹣∠α.


【解析】(1)过P作PE∥AB,通过平行线性质可得∠A+∠APE=180°,∠C+∠CPE=180°再代入∠PAB=130°,∠PCD=120°可求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.
【考点精析】掌握平行线的性质是解答本题的根本,需要知道两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网