题目内容
【题目】某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:
产品名称 | 核桃 | 花椒 | 甘蓝 |
每辆汽车运载量(吨) | 10 | 6 | 4 |
每吨土特产利润(万元) | 0.7 | 0.8 | 0.5 |
若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.
(1)求y与x之间的函数关系式;
(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.
【答案】(1)y=﹣3.4x+141.2;(2)当装运核桃的汽车为9辆、装运甘蓝的汽车为19辆、装运花椒的汽车为2辆时,总利润最大,最大利润为117.4万元.
【解析】
(1)根据题意可以得装运甘蓝的汽车为(2x+1)辆,装运花椒的汽车为30﹣x﹣(2x+1)=(29﹣3x)辆,从而可以得到y与x的函数关系式;
(2)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.
(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(2x+1)辆,装运花椒的汽车为30﹣x﹣(2x+1)=(29﹣3x)辆,
根据题意得:y=10×0.7x+4×0.5(2x+1)+6×0.8(29﹣3x)=﹣3.4x+141.2.
(2)根据题意得:,
解得:7≤x≤,
∵x为整数,
∴7≤x≤9.
∵10.6>0,
∴y随x增大而减小,
∴当x=7时,y取最大值,最大值=﹣3.4×7+141.2=117.4,此时:2x+1=19,29﹣3x=2.
答:当装运核桃的汽车为9辆、装运甘蓝的汽车为19辆、装运花椒的汽车为2辆时,总利润最大,最大利润为117.4万元.
【题目】在某项针对18﹣35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当0≤m<5时为A级,5≤m<10时为B级,10≤m<15时为C级,m≥15时为D级.现随机抽取部分符合年龄条件的青年人开展每人“日均发微博条数”的调查,制作图表如下: 18﹣35岁青年人日均发微博条数统计表
m | 频数 | 百分数 |
A级(0≤m<5) | 90 | 0.3 |
B级(5≤m<10) | 120 | a |
C级(10≤m<15) | b | 0.2 |
D级(m≥15) | 30 | 0.1 |
请你根据以上信息解答下列问题:
(1)求a,b;
(2)补全频数分布直方图.
【题目】某公司招聘一名部门经理,对A、B、C三位候选人进行了三项测试,包括语言表达、微机操作、商品知识,各项成绩的权重分别是3,3,4,三人的成绩如下表:
候选人 | 语言表达 | 微机操作 | 商品知识 |
A | 60 | 80 | 70 |
B | 50 | 70 | 80 |
C | 60 | 80 | 65 |
请你通过计算分析一下谁会被录取?若想要B被录取,如何设计各种成绩的权重?