题目内容

如图,在平面直角坐标系中,A为y轴正半轴上一点,过A作x轴的平行线,交函数y=-
2
x
(x精英家教网<0)的图象于B,交函数y=
6
x
(x>0)的图象于C,过C作y轴的平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(2)的条件下,求四边形AODC的面积.
分析:(1)根据点A的纵坐标是2,可以确定点B和点C的纵坐标,再进一步根据反比例函数的解析式求得点B和点C的横坐标,再进一步求得它们的长度之比;
(2)和(1)的方法类似,在求平行于x轴的线段的长度的时候,要让右边的点的横坐标减去左边的点的横坐标;
(3)根据(2)中的长度比,结合平行线分线段成比例定理求得该梯形的下底的长,再根据梯形的面积公式进行计算.
解答:解:(1)∵A(0,2),BC∥x轴,
∴B(-1,2),C(3,2),
∴AB=1,CA=3,
∴线段AB与线段CA的长度之比为
1
3


(2)∵B是函数y=-
2
x
(x精英家教网<0)的一点,C是函数y=
6
x
(x>0)的一点,
∴B(-
2
a
,a),C(
6
a
,a),
∴AB=
2
a
,CA=
6
a

∴线段AB与线段CA的长度之比为
1
3


(3)∵
AB
AC
=
1
3

AB
BC
=
1
4

又∵OA=a,CD∥y轴,
OA
CD
=
AB
BC
=
1
4

∴CD=4a,
∴四边形AODC的面积为=
1
2
(a+4a)×
6
a
=15.
点评:本题考查了反比例函数与几何的综合应用,解决此题的关键是要能够根据两点的坐标求得两点之间的长度,根据平行线分线段成比例定理进行计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网