题目内容
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F. (Ⅰ)试判断直线BC与⊙O的位置关系,并说明理由;
(Ⅱ)若BD=2 ,BF=2,求阴影部分的面积(结果保留π).
【答案】解:(Ⅰ)BC与⊙O相切. 证明:连接OD.
∵AD是∠BAC的平分线,
∴∠BAD=∠CAD.
又∵OD=OA,
∴∠OAD=∠ODA.
∴∠CAD=∠ODA.
∴OD∥AC.
∴∠ODB=∠C=90°,即OD⊥BC.
又∵BC过半径OD的外端点D,
∴BC与⊙O相切.
(Ⅱ)设OF=OD=x,则OB=OF+BF=x+2,
根据勾股定理得:OB2=OD2+BD2 , 即(x+2)2=x2+12,
解得:x=2,即OD=OF=2,
∴OB=2+2=4,
∵Rt△ODB中,OD= OB,
∴∠B=30°,
∴∠DOB=60°,
∴S扇形AOB= = ,
则阴影部分的面积为S△ODB﹣S扇形DOF= ×2×2 ﹣ =2 ﹣ .
故阴影部分的面积为2 ﹣ .
【解析】(Ⅰ)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线; (Ⅱ)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积.
【题目】如图,由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件,曾老师对他任教的学生做了一个调查,统计结果如表所示:
2011届 | 2012届 | 2013届 | 2014届 | 2015届 | |
参与实验的人数 | 106 | 110 | 98 | 104 | 112 |
右手大拇指在上的人数 | 54 | 57 | 49 | 51 | 56 |
频率 | 0.509 | 0.518 | 0.500 | 0.490 | 0.500 |
根据表格中的数据,你认为在这个随机事件中,右手大拇指在上的概率可以估计为 .