题目内容
【题目】如果两个角之差的绝对值等于60°,则称这两个角互为“互优角”,(本题中所有角都是指大于0°且小于180°的角).
(1)若∠1和∠2互为“互优角”,当∠1=90°时,则∠2=_____°;
(2)如图1,将一长方形纸片沿着EP对折(点P在线段BC上,点E在线段AB上)使点B落在点若与互为“互优角”,求∠BPE的度数;
(3)再将纸片沿着PF对折(点F在线段CD或AD上)使点C落在C′:
①如图2,若点E、C′、P在同一直线上,且与互为“互优角”,求∠EPF的度数(对折时,线段落在∠EPF内部);
②若∠B′PC′与∠EPF互为“互优角”,则∠BPE求∠CPF应满足什么样的数量关系(直接写出结果即可).
【答案】(1)30°或150;(2)40°或80°;(3)①∠EPF=80°,②∠EPF=40°.
【解析】
(1)按照“互优角的定义,求出∠2即可;
(2)根据∠EPB'+∠EPB'+∠EPB'+60°=180°解答即可;
(3)①由∠BPE+∠EPB'+∠B'PF+∠FPC=180°解答即可;
②∠B'PC'=∠FPC,∠EPB=∠EPF,∠EPB+∠EPF+∠FPC=180°解答即可.
解:(1)∵∠1和∠2互为“互优角
∴|∠1-∠2|=60°
∵∠1=90°
∴90°-∠2=60°或90°-∠2=-60°
解得:∠2=30°或150°
故答案为:30°或150.
(2)∵∠EPB'与∠B'PC互为“互优角”
当∠EPB'<∠B'PC时,∠B'PC-∠EPB'=60°
∴∠B'PC=∠EPB'+60°
∵△BEP翻折得△B'EP
∴∠EPB=∠EPB'
∵∠EPB+∠EPB'+∠B'PC=180°
∴∠EPB'+∠EPB'+∠EPB'+60°=180
解得:∠EPB'=40°
当∠EPB'>∠B'PC时,∠B'PC-∠EPB'=60°,可得∠EPB'=80°
故∠EPB'的值为40°或80°;
(3)①由题意得:点E、C、P在同一直线上,
∵∠B'PC'与∠EPF互为“互优角
∴∠BPC<∠EPF,∠EPF-∠B'PC=60°=∠B'PF
∵∠BPE=∠B'PC=∠EPF-60°,∠FPC=∠EPF
∴∠BPE+∠EPB'+∠B'PF+∠FPC=180°
∴∠EPF-60°+∠EPF+∠EPF=180°,得∠EPF=80°;
②由题意得:点E、C、P在同一直线上,
∵∠B'PC'与∠EPF互为“互优角
∴∠B'P'C-∠EPF=60°,得∠B'P'C=60°+∠EPF
∵∠B'PC'=∠FPC,∠EPB=∠EPF,∠EPB+∠EPF+∠FPC=180°
∴2∠EPF+60°+∠EPF=180°,解得∠EPF=40°.
故∠EPF的度数为40°.
【题目】某校对“学生在学校拿手机影响学习的情况”进行了调查,随机调查了部分学生,对此问题的看法分为三种情况:没有影响、影响不大、影响很大,并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:
人数统计表如下:
看法 | 没有影响 | 影响不大 | 影响很大 |
学生人数(人) | 20 | 30 | a |
(1)统计表中的a= ;
(2)请根据表中的数据,谈谈你的看法(不少于2条)