题目内容

【题目】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)Rt△ADE与Rt△BEC全等吗?并说明理由;
(2)△CDE是不是直角三角形?并说明理由.

【答案】
(1)解:全等,理由是:

∵∠1=∠2,

∴DE=CE,

∵∠A=∠B=90°,AE=BC,

∴Rt△ADE≌Rt△BEC


(2)解:是直角三角形,理由是:

∵Rt△ADE≌Rt△BEC,

∴∠3=∠4,

∵∠3+∠5=90°,

∴∠4+∠5=90°,

∴∠DEC=90°,

∴△CDE是直角三角形.


【解析】(1)根据∠1=∠2,得DE=CE,利用“HL”可证明Rt△ADE≌Rt△BEC;(2)是直角三角形,由Rt△ADE≌Rt△BEC得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE是直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网