题目内容

在矩形ABCD中,AB=4,BC=10,点M在BC上.
(1)若BM=3时,求点D到直线AM的距离;
(2)若AM⊥DM,求BM的长.
(1)如图(2),
过点D作DH⊥AM垂足为H,
∵AB=4,BM=3
∴AM=5.
∴sin∠DAM=sin∠AMB=
4
5
=
DH
10

DH=
4
5
×10=8

(2)如图(3)
∵AM⊥DM,
∴∠AMB+∠DMC=90°,
∵∠AMB+∠BAM=90°
∴∠BAM=∠DMC
∴△ABM△MCD,
BM
DC
=
AB
MC

BM
4
=
4
10-BM

∴BM2-10BM+16=0,解得,BM=2或BM=8.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网