题目内容
【题目】如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度数.
【答案】∠DAC=36°;∠BOA=117°
【解析】
首先利用AD是高,求得∠ADC,进一步求得∠DAC度数可求;利用三角形的内角和求得∠ABC,再由BF是∠ABC的角平分线,求得∠ABO,故∠BOA的度数可求.
解:∵AD是高
∴∠ADC=90°
∵∠C=54°
∴∠DAC=180°﹣90°﹣54°=36°
∵∠BAC=80°,∠C=54°,AE是角平分线
∴∠BAO=40°,∠ABC=46°
∵BF是∠ABC的角平分线
∴∠ABO=23°
∴∠BOA=180°﹣∠BAO﹣∠ABO=117°
练习册系列答案
相关题目