题目内容
【题目】(1)计算: (2)计算:
(3)解方程:
(4)解不等式组,并把它们的解集在数轴上表示出来.
【答案】(1)1;(2);(3),;(4).
【解析】
(1)首先解平方根和立方根,然后再按顺序计算.(2)首先观察为最简二次根式,然后将同类二次根式的系数相加减即可.(3)利用消元消元法,求解二元一次方程即可。(4)首先解出一元一次不等式的解集,然后在数轴上表示即可.
(1)
原式=2-(3-2)=2-1=1
(2)
原式=(1+3-6)= -2
(3)
解:把3x-2y=4方程两边同时乘以3,得9x-6y=12③,用②-③得9x-5y-9x+6y=13-12,解得y=1,把y=1代入①得3x-2×1=4,解得x=2,综上所述x=2,y=1
(3)
解:x- 解得x,1+3x2(2x-1)解得x3,所以0.8x3
【题目】某中学举行“汉字听写”比赛,每位学生听写汉字个,比赛结束后,随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分,根据信息解决下列问题:
组别 | 正确字数 | 人数 |
A | ||
B | ||
C | ||
D | ||
E |
(1)在统计表中, , ;
(2)补全条形统计图;
(3)在扇形统计图中“D组”所对应的圆心角的度数为 ;
(4)若该校共有名学生,如果听写正确的字数少于个定为不合格,请你估计这所中学这次比赛听写不合格的学生人数.
【题目】某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.
经过调查,得到如下数据:
销售单价x(元/件) | … | 20 | 30 | 40 | 50 | 60 | … |
每天销售量y(件) | … | 500 | 400 | 300 | 200 | 100 | … |
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系式,并求出函数关系式.
(2)物价部门规定,该工艺品的销售单价最高不超过45元/件,当销售单价x定为多少时,工艺厂试销该工艺品每天获得的利润8000元?(利润=销售总价﹣成本总价)
(3)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)