题目内容

【题目】如图,∠BADCAE=90°,ABADAEAC,点DCE上,AFCB,垂足为F.

(1)AC=10,求四边形ABCD的面积;

(2)求证:CE=2AF.

【答案】(1) 50;(2)证明见解析.

【解析】(1)求出∠BAC=EAD,根据SAS推出ABC≌△ADE,推出四边形ABCD的面积=三角形ACE的面积,即可得出答案;
(2)过点AAGCD,垂足为点G,求出AF=AG,进而求出CG=AG=GE,即可得出答案.

(1)∵∠BAD=CAE=90°,

∴∠BAC+CAD=EAD+CAD,

∴∠BAC=EAD.

ABCADE中,

AB=AD,BAC=DAE,AC=AE,

∴△ABC≌△ADE(SAS).

SABC=SADES四边形ABCD=SABC+SACD=SADE+SACD

=SACEAC·AE=×102=50.

(2)∵△ACE是等腰直角三角形,

∴∠ACE=AEC=45°.(1)ABC≌△ADE,

∴∠ACB=AEC=45°,∴∠ACB=ACE,CA平分∠ECF.

过点AAGCD,垂足为点G.

AFCB,AF=AG.又∵AC=AE,

∴∠CAG=EAG=45°,

∴∠CAG=EAG=ACE=AEC,

CG=AG=GE,

CE=2AG=2AF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网