题目内容
【题目】心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):
(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?
(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
【答案】
(1)解:设线段AB所在的直线的解析式为y1=k1x+20,
把B(10,40)代入得,k1=2,
∴y1=2x+20.
设C、D所在双曲线的解析式为y2= ,
把C(25,40)代入得,k2=1000,
∴
当x1=5时,y1=2×5+20=30,
当 ,
∴y1<y2
∴第30分钟注意力更集中.
(2)解:令y1=36,
∴36=2x+20,
∴x1=8
令y2=36,
∴ ,
∴
∵27.8﹣8=19.8>19,
∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.
【解析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和 进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到 ,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.
练习册系列答案
相关题目