题目内容
【题目】综合与实践 美妙的黄金矩形
阅读理解
在数学上称短边与长边的比是(约为0.618)的矩形叫做黄金矩形(GoldenRectangle),黄金矩形蕴藏着丰富的美学价值,给我们以协调、匀称的美感.
(1)某校团委举办“五四手抄报比赛”,手抄报规格统一设计成:长是40cm的黄金矩形,则宽约为__________cm;(精确到0.1cm)
操作发现 利用一张正方形纸片折叠出一个黄金矩形.
第一步,如图1,折叠正方形纸片ABCD,使AB和DC重合,得到折痕EF(点E,F分别在边AD,BC上),然后把纸片展平.
第二步,如图2,折叠正方形纸片ABCD,使得BC落在BE上,点C′和点C对应,得到折痕BG(点G在CD上),再次纸片展平.
第三步,如图3,沿过点G的直线折叠正方形纸片ABCD,使点A和点D分别落在AB和CD上,折痕为HG,显然四边形HBCG为矩形.
(2)在上述操作中,以AB=2为例,证明矩形HBCG是黄金矩形.
(参考计算: =)
拓广探索
(3)“希望小组”的同学通过探究发现:以黄金矩形的长边为一边,在原黄金矩形外作正方形,得到的新矩形仍然是黄金矩形.
如图4,如果四边形ABCD是黄金矩形(AB>AD),四边形DCEF是正方形,那么四边形ABEF也是黄金矩形,他们的发现正确吗?请说明理由.
【答案】(1)24.7;(2)证明见解析;(3)四边形ABEF是黄金矩形这个结论正确.
【解析】
(1)根据黄金矩形的定义计算即可;
(2)如图2中,连接EG,设CG=C′G=x.由题意 在Rt△EGD和Rt△EGC′中, 解得可得,由此即可证明;
(3)如图4中,四边形ABEF是黄金矩形这个结论正确;设AB=a,则AD=BC=a,求出AB:BE的值即可判断;
解:(1)宽约为40×≈40×0.681≈24.7cm.
故答案为24.7.
(2)如图2中,连接EG,设CG=C′G=x.
∵AB=2,AE=ED=1,
∴
在Rt△EGD和Rt△EGC′中,
解得
∴
∴图3中的矩形HBCG是黄金矩形;
(3)如图4中,四边形ABEF是黄金矩形这个结论正确;
理由:设AB=a,则AD=BC=a,
∵四边形DCEF是正方形.
∴DC=DF=EF=CE=a,
∴
∴
∴矩形ABEF是黄金矩形.
【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)写出运动员甲测试成绩的众数为_____;运动员乙测试成绩的中位数为_____;运动员丙测试成绩的平均数为_____;
(2)经计算三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8,请综合分析,在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)