题目内容
【题目】如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
(1)求证:AB∥CD;
(2)若∠EHF=80°,∠D=40°,求∠AEM的度数。
【答案】(1)见解析(2)
【解析】
(1)根据同位角相等两直线平行,可证CE∥GF,根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD;
(2)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.
(1)证明:∵∠CED=∠GHD,
∴CE∥GF;
∴∠C=∠FGD,
∵∠C=∠EFG,
∴∠FGD=∠EFG,
∴AB∥CD;
(2)∵∠DHG=∠EHF=80°,∠D=40°,
∴
∵CE∥GF,
∴
∵AB∥CD,
∴
∴
练习册系列答案
相关题目
【题目】在一个不透明的盒子中装有颜色不同的8个小球,其中红球3个,黑球5个.
(1)先从袋中取出m(m>1)个红球,再从袋中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:
事件A | 必然事件 | 随机事件 |
m的值 |
(2)先从袋中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率是,求m的值.