题目内容
设A和B为抛物线y=-3x2-2x+k与x轴的两个相异交点,M为抛物线的顶点,若△ABM为Rt△,求k的值.
如图,因抛物线与x轴有两个相异的交点,
所以△=4-4k×(-3)>0,
解得,k>-
,依题意∠AMB=90°,AM=BM,过M作MN⊥x轴于N,则显然有MN=
AB,
又因MN=
=k+
,
AB=
,
=
,
=
,
=
,
所以k+
=
×
.
解得k1=0,k2=-
(舍去).
故答案为:k=0.
所以△=4-4k×(-3)>0,
解得,k>-
1 |
3 |
1 |
2 |
又因MN=
4k×(-3)-4 |
4×(-3) |
1 |
3 |
AB=
(x1-x2)2 |
=
(x1+x2)2-4x1x2 |
=
(-
|
=
2 |
3 |
1+3k |
所以k+
1 |
3 |
1 |
2 |
2 |
3 |
1+3k |
解得k1=0,k2=-
1 |
3 |
故答案为:k=0.
练习册系列答案
相关题目