题目内容
【题目】如图,抛物线的图象与x轴交A(-3,0),B(1,0)两点,与y轴交于点C(0,3),点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)设点T在第二象限的抛物线上,若其关于原点的对称点也在抛物线上,求点T的坐标;
(3)点M为线段AB上一点(点M不与点A,B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积.
【答案】(1)y=-x2-2x+3;(2)T(-,2);(3).
【解析】
(1)用待定系数法,即可求出解析式;
(2)设点T坐标,表示出点T关于原点对称的点,代入解析式,求出点T坐标;
(3)设M点横坐标为m,则PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,矩形PMNQ的周长=-2m2-8m+2,将-2m2-8m+2配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得E点坐标,从而求得三角形的面积.
解:(1)设解析式y=a(x-1)(x+3)
将C(0,3)代入得a =-1
∴解析式为y=-x2-2x+3
(2)设T(m,-m2-2m+3)
则点T关于原点对称的点K坐标为(-m,m2+2m-3)
将点K代入解析式得
m2+2m-3=-m2+2m+3
∴m2=3
∴m=±
∴m=-
∴T(-,2)
(3)由抛物线y=-x2-2x+3=-(x+1)2+4可知,对称轴为直线x=-1,设点M的横坐标为m,则PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,
∴矩形PMNQ的周长=2(PM+MN)=2(-m2-2m+3-2m-2)=-2m2-8m+2=-2(m+2)2+10,
∴当m=-2时矩形的周长最大.
∵点A(-3,0),C(0,3),
∴直线AC的函数表达式为y=x+3,
当x=-2时,y=-2+3=1,则点E(-2,1),
∴EM=1,AM=1,
∴S=AMEM=.
【题目】某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:
收集数据
从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:
八年级 | 78 | 86 | 74 | 81 | 75 | 76 | 87 | 70 | 75 | 90 |
75 | 79 | 81 | 70 | 74 | 80 | 86 | 69 | 83 | 77 | |
九年级 | 93 | 73 | 88 | 81 | 72 | 81 | 94 | 83 | 77 | 83 |
80 | 81 | 70 | 81 | 73 | 78 | 82 | 80 | 70 | 40 |
整理、描述数据
将成绩按如下分段整理、描述这两组样本数据:
成绩(x) | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
八年级人数 | 0 | 0 | 1 | 11 | 7 | 1 |
九年级人数 | 1 | 0 | 0 | 7 | 10 | 2 |
(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)
分析数据
两组样本数据的平均数、中位数、众数、方差如表所示:
年级 | 平均数 | 中位数 | 众数 | 方差 |
八年级 | 78.3 | 77.5 | 75 | 33.6 |
九年级 | 78 | 80.5 | a | 52.1 |
(1)表格中a的值为______;
(2)请你估计该校九年级体质健康优秀的学生人数为多少?
(3)根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)